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ABSTRACT 

We construct examples of Baer ordered *-fields of the first kind of every 
dimension 4 n, n = 1,2 . . . . .  

1. Introduction. Lifting a Baer ordering 

"[his paper presents examples of Baer ordered *-fields supplementing the 

examples contained in [6], [7], and [8]. I use the term "*-field" as a convenient 

term for what is often called a "division ring with involution." We shall assume 

characteristic # 2 throughout.  By dimension of a field K, I mean the dimension 

of K as a vector space over its center. 

We say that a *-field K with involution a ~ a*  has a Baer ordering if there 

exists a subset II of K (called the domain ofpositivity for the ordering) satisfying 

these five conditions: (1) 11 consists solely of symmetric elements (a = a*) ;  

(2) contains 1 but not 0; (3) is closed under sum; (4) contains along with A every 

aAt~*, a # 0; and (5) contains either A or - A  (but not both) for every nonzero 

symmetric A. The relation A < IX ¢¢, tx - A ~ II then totally orders the set of 

symmetric elements. This definition was proposed by Reinhold Baer in his 1952 

book [4, Chapter  IV, Appendix I]. 

When the center of a *-field consists solely of symmetric elements, we call the 

involution * of the first kind. If the center contains a nonsymmetric element,  in 

which case the center is a quadratic extension of its subfield of symmetric 

elements, we call the involution of the second kind, or unitary. A noncommuta-  

tive finite-dimensional *-field of the first kind has dimension 4", n = 1,2 . . . .  [1; 

Thm. X.19 and Thm. V.17]. 
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In [7] I have constructed examples of finite-dimensional Baer ordered *-fields 
of the second kind of dimension p2, for every prime p = 3 (mod 4). The following 
theorem constitutes the main result of this paper. 

1.1. THEOREM. There exist Baer ordered *-fields of the first kind of every 
dimension 4", n = 1,2 . . . . .  

The examples are tensor products of quaternion fields. We show them ordered 

by the "lifting" procedure described in [7]. Here is a brief description of the 
procedure. 

1.2. LEMMA. Let K and Ko denote *-fields, and let N: K---> Ko be a mapping 
of K onto Ko that satisfies the following four conditions: 

(1) N(ot) = 0 ¢O a = 0; N(1) = 1, 

(2) for each a and each symmetric A in K, there exists [3 in Ko such that 
N(aXa *) =/3N(A)/3*, 

(3) if a is symmetric, so is N(a) ,  

(4) if N(a )  + N(/3) # O, then N(a  +/3) = one of N(a) ,  N(/3), N(a )  + N(/3). 
Suppose Ko is Baer-ordered with domain of positivity Iio. Then the set 11 = 
{A E K ;  A =A* and N(A)~lio} is a domain of positivity in K. 

We shall refer to this procedure as "lifting the ordering" from K0 to K. To 

prove Lemma 1.2, we just check that our II satisfies the five conditions listed at 
the beginning of this section. By definition, 11 consists solely of symmetric 
elements, and we have 1 E II because N(1)= 1 E IIo. Also 0 ~ H  because 
N(0) = 0 ~ IIo. Thus our II satisfies the first two requirements. Next we must 
show that if )t,/x E l i ,  then also )t +/z El l .  This amounts to proving N(A) E lio, 
N(/~)Eli0 ::> N(A +/~)EIIo. But if N(A)EIIo and N(p,)~IIo, then N(A)+ 
N(/~) E IIo so N(A) + N(/z) # 0, hence (by (4) of Lemma 1.2)), N(A +/z)  = one 
of N(A), N(/~), N(A)+ N(~),  all of which lie in IIo. Thus 11 is closed under sum, 
which is the third requirement. If A E II, which means N(A) E IIo, and 0 # ot E 

K, then by hypotheses (2) and (1), N(aAot*) =/3N(A)/3* for a nonzero/3 in K0, 
hence aAa * ~ I1. 

To establish the last requirement on 11, we need this remark: A function N that 
has the four properties listed in Lemma 1.2, also has the property N ( - a ) =  
- N(a)  for all a E K. To prove this remark we may assume a # 0 (as the remark 

is obviously true when a =0). We need to show that N ( - a ) + N ( a ) = O .  
Suppose not. Then, by (4), N ( - a + a ) = o n e  of N ( - a ) ,  N(a),  
N( - a) + N(a).  But none of these is 0, while N( - a + a)  = N(0) = 0. Hence we 
must have N ( -  a ) +  N ( a )  = O. 
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Returning to the fifth requirement on 11, suppose that 0 ~ A = A* E K. Then 

by (3) and (1), N(A) is a nonzero symmetric in IIo, so either N(A)~IIo ,  or 

- N ( A )  = N ( - A ) E I I o .  In the first case, A E H, and in the second case, 

- A  E H. That proves Lemma 1.2. 

In the applications of this lemma, K is the *-field we wish to order, Ko is its 

residue class *-field with respect to a *-valuation, and the map N is constructed 

with the help of what is called a smooth presection for the *-valuation. The 

details of the constructiOn of N are, briefly, as follows. (This material is taken 

from §§2 and 3 of [7].) 

A *-valuation on a *-field K is a homomorphism w of K ×, the multiplicative 

group of nonzero elements of K, onto a (necessarily abelian) ordered group G 

such that w(a*) = w(a) for all a E K ×, and w(a + [3) >= min{w(a), w(/3)} for all 

a , [ J E K  with ot + / 3 ~ 0 .  

Given a *-valuation w: K×---~ G, the set • = {a ~ K×: w(a)>= 0} U {0} is the 

• -valuation ring of w, ~ = {a E K×: w(a) > 0} U {0} the maximal ideal of ~ ,  and 

K0 = ~ / ~  the residue class *-field of w, which carries the natural induced 

involution defined by (a + 9t)* = a * + ~ ,  ot E ~.  We use 0 for the natural map 

of • onto Ko: O(a )=  a + ~R. Hence, by definition, O(a*)= 0(~)*. Given a 

symmetric or skew element p in K ×, the formula a s = pa*p -I defines another 

involution on K which in turn induces another involution on Ko which is 

effectively defined by O(a) "~= O(pa*# -I) = O(a"~), a E ~ .  I call the element # 

smooth if this induced involution on Ko is conjugate to its *. That is, p is smooth 

when there exists an automorphism Fp of Ko so that 

# = Fp o * o F~' on K0. 

I call the *-valuation w itself smooth when it fulfills the following two conditions: 

(1) w(2) = 0; 

(2) each equivalence class w-l(g) contains a smooth symmetric element if it 

contains symmetric elements at all, otherwise it contains a smooth skew element. 

On the basis of these definitions, one can state the main theorem concerning 

the lifting of orderings as follows. 

1.3. THEOREM [7; Theorem 3.2]. Given a *-field K with smooth *-valuation, 
then there exists a map N of K onto its residue class *-field Ko satisfying the 
conditions listed in Lemma 1.2. Hence any Baer ordering of Ko may be lifted to K. 

We refer to [7] for the detailed proof of Theorem 1.3, and continue now our 

sketch of the construction of the map N. 

The next step is to show that a smooth *-valuation w: K ×--~, G always has a 
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smooth presection s: G ---* K × which is a map that selects, for each g ~ G, an 

s(g) E w-l(g)  together with a corresponding automorphism Fscs~ of the residue 

class *-field Ko, such that the involution x '~ = s(g)x*s(g)  -~ on K induces the 

involution Fstg~o* o Fs-~g~ on K0, and such that the following four conditions are 

fulfilled. 

(1) s(0) = 1 and F1 = I, 
(2) s(g) is smooth symmetric if w-l(g)  contains symmetric elements, other- 

wise smooth skew, 

(3) given g = 2 h  in 2G, there exist / 3 ~ K  × such that s(2g)=/3/3* and 

rs2s)(x) =/3x/3 -1 on Ko, 

(4) given g E G written (not necessarily uniquely) g = h +2k,  then there 

exists 3' E K × such that s(g) = "ys(h)3,* and Fs<~(x) = ~/F~h~(x)3, -~ on Ko. 

That construction of the smooth presection s is the key step. With it in hand, 

the function N is defined thus: if 0 C A S K  × with w ( a ) = g ,  set N ( t r ) =  

F~s~o O(as(g)-'), where, as above, 0 is the natural map of the *-valuation ring 

onto K0, and s: G ~ K × is the smooth presection. Complete the definition of N 

by setting N(0) = 0. Thus defined, this function N, which maps K onto its residue 

class *-field K0, fulfills the requirements of Lemma 1.2. The paper [7] provides 

details of the proof, and §4 of [8] some additional remarks. A more informal and 

more detailed proof of the key lemma that any smooth *-valuation has a smooth 

presection is available in preprint form. 

2. The examples 

We begin with a general discussion of *-fields of the first kind. The substance 

of this exposition is taken mainly from §5 of L. Rowen's paper [12] to which we 

refer for proofs and other references. 
If K is a *-field with involution a ~ a*,  and # a nonzero element in K that 

satisfies p = O*, then the formula x ~' = px*p- '  defines another involution # on 

K that Rowen calls equivalent to *. This is an equivalence relation among 

involutions on K. If p* = - p ,  then the same formula x '~=px*p  -1 also defines 

another involution # on K that we call skew-equivalent to *. If * is unitary, 

then equivalence and skew-equivalence coincide. But if * is of the first kind, then 

equivalent involutions are never skew-equivalent, and skew-equivalent involu- 

tions never equivalent. Moreover, in this case, skew-equivalence is not an 

equivalence relation. 
(In these terms we can rephrase the "smoothness" criterion mentioned in §1: 

A symmetric (resp. skew) element O is smooth for a *-valuation if the equivalent 
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(resp. skew-equivalent) associated involution x "~= px*p -L induces on the re- 

sidue class *-field an involution conjugate to its *.) 

If K is a *-field of the first kind of dimension 4" over its center Z, then the 

symmetric elements within K form a vector space over Z of dimension either 

½(4" - 2") or ½(4" + 2"). In the former case one calls the involution symplectic ; in 

the latter case, orthogonal. All symplectic involutions on K are mutually 

equivalent, all orthogonal involutions mutually equivalent, and any symplectic 

involution is skew-equivalent to any orthogonal one. Thus K has exactly two 

equivalence classes of first kind involutions, the symplectic and the orthogonal. 

The fact that K has only two equivalence classes of involutions simplifies the 

discussion of the Baer orderability of K. The property "Baer  orderable" scales 
[8; §2], which is to say it is preserved under equivalence. Because, if H is a 

domain of positivity for K(*), then Hp -1 qualifies as a domain of positivity for 

K ( # )  where x ~' = px*p -1, p* = p EI I .  (We may take p E l i  as replacing p by 

- p  does not change x~'.) Hence if a *-field is Baer orderable for its given 

involution, then it is also Baer orderable for any equivalent involution. Thus, in 
discussing the Baer orderability of a finite-dimensional *-field of the first kind, 
there are just two cases to consider: the symplectic and the orthogonal. 

We turn now to the construction of the example that verifies Theorem 1.1. 

This example is a special case of the iterated Laurent series division rings which 

Amitsur brought to prominence in his construction of a noncrossed product [2]. 

Amitsur constructed these division rings (which he used to show that certain 

generic matrix algebras could not he crossed products) by making successive 

Laurent series adjunctions of 2n indeterminates x,, yl . . . .  , x,, y, to a commuta- 

tive base field F, all indeterminates commuting except that y~x, = w,x~y,, w~ a q~ 

root of unity, q~ prime, 1 = i _<-- n. One may find a detailed description in [9; II.5], 

and an in-depth study in a more general setting in [13]. Our example, which we 

shall present now in detail, has all q~ = 2, so all to~ -- - 1 .  

Let F be a commutative field, q-ordered in the sense of Prestel [11]. Any 

ordinary commutative ordered field is q-ordered, so we may take any such field 

for F, for example the rationals Q or the real numbers R. Let 

x~, y~, x2, Y2 . . . . .  x,, y, be 2n indeterminates over F with the multiplication table 

(1) 
= g x ,  = 

x~xj = xsxi Y~Ys = YiY~ 

for ~ E F 

yixj = xiyi when i #  j 

yixi = -- xiy,. 
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Let K = F((xl, yl . . . . .  x,, y.)) be the iterated Laurent series field obtained by 

successively adjoining the indeterminates xl, y~,x2, y2, . . . ,  x,, y, to F in the 

order indicated. The first adjunction gives the commutative field F((x~)) whose 

general nonzero term has the form 4,(xl)= E~x~t where ~ E F and the sum is 

taken over a subset of the integers that has a smallest element a(1) with 

corresponding coefficient ffa(~) ~ 0. At the next stage we get the field F((x~, y~)) 

whose general nonzero term has the form ~b(x~,y~)=E~b~(xl)y~ where 

ck~ (x~)E F((xl)) and the sum is taken over a subset of the integers that has a 

smallest element b(1) with corresponding coefficient ~bbo)(xi) ~ 0. Add term-by- 

term and multiply according to the rules in table (1). At the last stage (which 

yields K) we adjoin y, to F((x~, y~ . . . . .  x,)). The general nonzero element a of 

K has the form a = ~b~ (x~, yL . . . . .  x,)y~, where ~b~ E F((xl, y~ . . . . .  x,)) and the 

sum is taken over a subset of the integers that has a smallest element b(n) with 

corresponding coefficient ~bb~,~(x~, y , . . . ,  x,) ~ 0. 

Let Z denote the integers, and Z x . . .  x Z = Z  2" the abelian group of 

2n-tuples of integers with the antilexicographic ordering, i.e. the ordering whose 

positive elements are those 2n-tuples (m~ . . . . .  mz,) with m, > 0, rn i = 0, ] > i. In 

the expression for the general nonzero element a of K let b(n) denote the 

smallest power of y. that appears in a =~b~(x~,y~ . . . .  ,x.)y'o with nonzero 

coefficient ~bb(.)(xl, y~ . . . . .  x.), let a(n) denote the smallest power of x. that 

appears in ~bb(.)(xt, y~ . . . .  ,x . )=E4,~(xt  . . . . .  y._t)x~, with nonzero coefficient 

~b~(.~(xt . . . .  , y. ~), etc., just as before. We may then write the general nonzero a 
in K as 

(2) ~ = ~x~(l~y~ (1~'' • x~.("~y~,(")+ ' ' -  

where the ellipsis represents a sum over 2n-tuples strictly greater than 

(a(1) . . . . .  b(n)) in the antilexicographic ordering, and 0 ~  ff ~ F. 

With a expressed as in (2), define 

(3) w(a) = (a (1), b (1) , . . . ,  a(n), b(n)) ~ Z ~". 

One checks easily that w is a Krull valuation on K, mapping K ×, the 

multiplicative group of nonzero elements of K, onto the totally ordered abelian 

group Z z". The residue class field of w is clearly F. 

The center Z of K is the commutative iterated Laurent series field 

Z = F((x~, y~ . . . . .  x~., y~.)), 

and K is obtained from Z by the algebraic adjunction of the quadratic elements 

Xl, y~ . . . .  , x., y. to Z. If K~ stands for the quaternion field obtained by adjoining 
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x, and yi to Z, then we may represent our field K as the tensor product 

n 

K =(~ )  K,  
i = l  

the tensor product being taken over the common center Z. In this form the field 

K was first constructed by Kbthe [10; §3]; one may find a description in [5; Ch. 

II]. 

The quaternion field K~ is spanned over Z by the four elements 1, x~, y~, x~y~. A 

quaternion field admits exactly one symplectic first kind involution; for K~ we get 

this involution by making x~ and y~ skew. (This choice makes x~y~ also skew.) A 

quaternion field also admits many (mutually equivalent) orthogonal first kind 

involutions. For K,  we get such an involution by making xi and yi both 

symmetric (which makes x~yi skew). Any choice of first kind involutions on each 
ot~ the n fields K, induces a first kind involution on K [1; Ch.X, Lemma 2] which 

is either symplectic or orthogonal. The involution induced on K will be 

symplectic when we have an odd number of symplectic factors K~ ; otherwise it 

will be orthogonal. We shall prove the Baer orderability in either case, thus 

proving more than is explicitly stated in Theorem 1.1. 

Let * be the symplectic or orthogonal involution induced on K, in the manner 

just referred to, by various assigned first kind involutions on the K~. If the 

nonzero element a of K has the representation given as in (2) 

then 

= ~.x 7(,y ~(,~......~°("~ y.b(.~ + . . .  

= " ' x .  y .  + ' ' ' .  

Hence w ( a ) =  w(a*), so the valuation w defined by (3) is a *-valuation. 

The valuation w is also smooth (in the terminology of Section 1), in fact with 

the associated automorphisms Fo of the residue class *-field F always the 

identity. This is a consequence of the fact that 0(/3a/3 -~) = 0(a)  for all a in ~,  

and all/3 in K ×. Here d) = {a E K×; w(a) >= 0} U {0} is the *-valuation ring of w, 

and 0 is the natural map of • onto the residue class *-field ~ / ~ ,  where 

= {a E K×; w ( a ) > 0 }  U {0}. Using the notation (2), the general nonzero 

element a of • can be written 

a = ~ ' + " "  

where ~ E F .  We have ~O¢:~aE~×={ctEK~;w(a)=O} the group of 

invertible elements in ~. If ot E ~,  the map 0 is given by O(a) = ~, and we have 
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clearly 

/ 3 a / 3 - '  = ~ + . . .  

for every /3 E K ×, thus 0(/3a/3 -1) = 0(a)  for every a ~ ~ ,  and every /3 in K ×. 

Referring back to the discussion directly preceding Theorem 1.3, we see that 

accordingly every nonzero symmetric and skew element p is smooth, with 

associated automorphism F~ = identity. As each equivalence class w-~(g) con- 

tains either a symmetric or a skew element [7; p. 224], our *-valuation w is 

smooth. Thus, by Theorem 1.3, we can lift the Baer ordering from F to K 

(Prestel's q-ordering, which is the ordering we have put on F, is the special case 

of Baer's ordering with *-identity). 

Our method of proof is constructive, and permits us to explicitly describe the 

lifted ordering, once having constructed a smooth presection. For example, 

consider one quaternion *-field K spanned by x, y, and xy. Put an orthogonal 

involution on K by making x and y symmetric. The general nonzero element a 

of K has the form 

,~ = 6 , ( x ) y  ° + 6 , ~ L ( x ) y " + '  + . . . .  ~x,~y o + . . .  

where ~b,(x)= ~x '~ + . . . ,  0 ~  ~" E F. The function N ( a ) =  O(ots(g)-') gives us 

an explicit rule to determine which symmetric a are positive and which are 

negative. 
To construct the smooth presection s, first define an auxiliary function 

t (p ,q)=xPy 4 which selects for each g = ( p , q ) E G  = Z × Z  an a in K with 

w ( a ) = g .  Next define the presection s on 2G by s(2p,2q)= t(p,q)t(p,q)* 
= x2Py 2q. The elements x2~y 2q are central symmetries. 

We select (0, 0), (1, 0), (0,1), and (1, 1) as representatives of the four cosets of 

2G in G, define s on these elements as 1, x, y, and xy (skew) respectively, and 

the define s on all of G by s(g)= t(h)s(a)t(h)* where g = a + 2 h  (unique), a 

being one of the coset representatives. We find s(m, n) = ( - 1)~"~"~x"~y ° where 

e(2p,2q) = O, e(2p + 1,2q) = q, e(2p,2q + 1) = p, and e(2p + 1,2q + 1) = p + q. 

The function N : K - - * F  then has this explicit form: N ( ~ x ' ~ y " + ' " )  = 

( - 1 ) ' ~ ' ~ ,  0 ~  ~ E F. Hence N ( x ) =  N ( y ) =  1 so x and y are positive. But 

N(x2y) = N(xy 2) = - 1 so the symmetries x2y and xy 2 are both negative. In a 

q-ordered commutative field, any nonzero square times a positive element is 

positive. As x2y < 0, the same rule does not hold in a Baer ordered *-field, even 

though x 2 and y commute. But x2y < 0 is also clear on other grounds because 

y > 0 ~ 0 < xyx* = xyx = - x2y. Also x2y 2 > 0, x6y < 0, etc. 

Further 1 - nx = 1. x°y ° -  nx~y ° > 0  for all n = 1,2 . . . .  , so x < ( l /n )  for all n, 
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thus x is infinitesimal. And x - ny = x ly  ° -  nx°y ~ > 0  for all n, so y < (1/n)x, 

n = 1,2 . . . . .  

Clearly the same kind of explicit description can be given for any number of 

quaternion factors. 

That  completes the proof of Theorem 1.1. 

On page 227 of [7] I made the statement: "Surprisingly, the tensor product of 

quaternion *-fields with its usual involution never admits an ordering," which I 

corrected in the erratum to include the additional hypothesis that a basis element 

of one of the components has square congruent to - 1  modulo the common 

center. In the erratum I also asserted: "Whether  the nonorderabili ty continues 

to hold without the qualifying restriction on a basis element seems to be an open 

question." 

Clearly the question is no longer open, as the examples of Baer-ordered 

*-fields that we have just constructed are all tensor products of quaternion 

*-fields. 

Moreover,  the qualified statement, which was the one actually proved in [7], is 

a special case of the following interesting result told to me by Maurice Chacron. 

2.1. THEOREM (Chacron). Suppose K is a noncommutative Baer-ordered 

*-field with center Z, and suppose further that K is not a standard quaternion 

*-field. Then, given 0 ~ ~ E Z, the equation x 2= - ~ 2  has only centeral skew 

solutions x. In fact, x 2 = - ~2, 0 ~ ~, E Z, has no solutions at all when K is of the 

first kind, and has a solution if and only if ~ / -  1 E Z and ( X / -  1)* = - X / -  1 

when K is of the second kind. In the latter case, x = ~ ~ / -  1 is the unique solution. 

By a "standard quaternion *-field" I mean a 4-dimensional field equipped with 

its unique symplectic involution. (In this case the center consists exactly of the 

symmetric elements.) 

PROOF (M. Chacron, private communication). By considering x/~ in place of 

x, we may clearly deal with the equation x 2= - 1 .  

The proof uses the fact that a Baer-ordered *-field is formally real, which 

means that an equation "2a~tra* =0 ,  where ~r = t  r*,  can have only a trivial 

solution. 

First, note that if x 2 = - 1 has a solution at all, then x must be skew. Write 

x = t r + r ,  tr* =tr ,  I " * = - ~ ' .  Then x2=tC+~-2+(t r~ '+~-~) ,  so o ' 2 + C = - 1 ,  

trr + rtr = 0. A routine calculation shows then that ~'trz* + tr + ortnr* = 0 

whence, by formal reality, o- = 0. Hence x = r is skew. 

If 0 ~  p = p*, then A = x p - p x  is symmetric, and by direct computation 
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x A x * +  A = 0. Using formal reality again, we conclude that )t = 0. Hence x 
commutes with every symmetric element, thus must be central by Dieudonn6's  
lemma [6; Lemma 1], as we have assumed K is noncommutative and non- 
quaternionic. The remaining assertions in Theorem 2.1 now follow routinely. 

Chacron's theorem generalizes the result stated in the erratum of [7]. It also 
shows that the example constructed by Amitsur, Rowen, and Tignol [3] of a 
*-field of the first kind of dimension 4 3 not the tensor product of quaternions 
cannot be Baer ordered, because this first-kind *-field contains an element ~c~ 
satisfying ~ = - 1  [3, Theorem 5.1, first line of proof]. 
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